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Abstract

A study is conducted to examine the role of convection on close contact melting of a high Prandtl number phase change material, i.e. ice,
resting on a heated plate. A convection dominated model is proposed and its predictions are compared to a conduction dominated model and
to experimental data. Results indicate that convection plays a leading role in the process of close contact melting for Steeff � 0.1. Convection
reduces the heat flux at the solid–liquid interface thereby slowing down the melting rate. The effect of inertia forces is negligible during the entire
melting process while surface tension becomes important only near the end. It is also shown that buoyancy forces reduce the heat transfer rate at
the solid–liquid interface.
© 2006 Elsevier Masson SAS. All rights reserved.

Sommaire

Le rôle de la convection lors de la fusion par contact direct de substances au nombre de Prantl grand, comme la glace, est examine. Un modèle
mathématique de convection est présenté et ses predictions sont comparées à celles d’un modèle de conduction et à des mesures expérimentales.
Les résultats montrent que la convection deviant incontournable pour Steeff � 0.1. La convection réduit le flux de chaleur à l’interface solide–
liquide et par conséquent ralentit le processus de fusion. L’effet des forces d’inertie est négligeable pendant toute la durée de la fusion alors que
l’effet de la tension superficielle devient important vers la fin. On observe également que les forces d’Archimède réduisent le flux de chaleur à
l’interface solide–liquide.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Over the last two decades, solid–liquid phase change heat
transfer has received increasing research attention in the open
literature [1]. This type of heat transfer finds applications in the
melting of ice and the solidification of water [2], the purification
of metals [3], the study of geophysical phenomena (fusion of
glaciers and volcanic eruptions) [4], the cooling of electronic
equipments [5] and the thermal control of space stations and
vehicles [6].
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Different modes of heat transfer such as conduction, convec-
tion, radiation and close contact melting may be involved in a
system that undergoes solid–liquid phase change [1]. The mode
that is of particular interest to the authors here is close contact
melting. Close contact melting occurs when a solid melts while
being in contact with a heat source. The liquid generated at the
melting front is squeezed out from under the solid by the pres-
sure maintained in the central section of the film by the weight
of the free solid.

The problem of close contact melting has been the subject of
a number of investigations related to the fundamentals of heat
transfer [4,7–11], lubrication [1] and latent heat energy stor-
age [12–14]. Close contact melting is primarily studied because
the heat fluxes across the melt layer separating the heat surface
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Nomenclature

Dimensional variables

C heat capacity . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

F forces, other than pressure . . . . . . . . . . . . . . . . . . . N
g acceleration of gravity . . . . . . . . . . . . . . . . . . . m s−2

h latent heat of fusion . . . . . . . . . . . . . . . . . . . . . J kg−1

H initial height of the block . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

L length of the block . . . . . . . . . . . . . . . . . . . . . . . . . . m
P pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Q flow rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

S molten height of the block . . . . . . . . . . . . . . . . . . . m
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
u x velocity component . . . . . . . . . . . . . . . . . . . . m s−1

v y velocity component . . . . . . . . . . . . . . . . . . . . m s−1

w z velocity component . . . . . . . . . . . . . . . . . . . . m s−1

U speed of the liquid in the gap . . . . . . . . . . . . . m s−1

V melting speed . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

x coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
y coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
z coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α thermal diffusivity of melt . . . . . . . . . . . . . . . m2 s−1

δ molten layer thickness . . . . . . . . . . . . . . . . . . . . . . . m
�T temperature difference (Tp − Tm) . . . . . . . . . . . . . K
Φ viscous dissipation. . . . . . . . . . . . . . . . . . . . . . m2 s−2

λ roots of a Laplace equation
μ dynamic viscosity . . . . . . . . . . . . . . . . . . . . . N s m−2

ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ surface tension . . . . . . . . . . . . . . . . . . . . . . . . . N m−1

Non-dimensional variables

C1 function dependent on the geometry
C2 function dependent on the height of the block and

the surface tension
CSte function dependent on the plate temperature
Cσ function dependent on the surface tension

Subscripts

eff effective
f liquid
m melting point
n indices of summation
p plate
s solid
sc subcooled
tot total melt
x in the x direction
z in the z direction

Superscripts

∗ indicates dimensionless quantity

Definitions of non-dimensional variables

Ec Eckert number U2/C�T

Oh Ohnesorge number μ/
√

ρLσ

Nu Nusselt number q ′′/(kf�T/Lx)

Pr Prandtl number ν/α

Ste Stefan number C�T/hfs
from the solid phase change material (PCM) are generally high.
As a result, the melting times are considerably reduced com-
pared to that observed for other heat transfer modes.

In most of the previous studies on close contact melting, the
process by which the melt is squeezed out of the small gap
separating the heat source and the solid was assumed to be
quasi-steady and the heat transfer through the liquid film was
considered to be conduction dominated [1,4,8–10,12–14]. Re-
cent studies suggest however that this last assumption may, in
some cases, no longer be valid as convection heat transfer pre-
vails in the thin melt layer [11,16–18]. For instance, Saito et
al. [11] and Yoo et al. [18] have carried out numerical analyses
showing that the heat transfer in the liquid film is affected by the
effect of convection in the case of Ste number larger than 0.1.
They suggest that the melting rate decreases at high Ste number
because the heat capacity of molten liquid increases with Ste.

In a previous article [16], the authors showed, by perform-
ing an order of magnitude analysis, that convection and inertia
forces play a role in the melting process when a relative velocity
is imposed between the PCM block and the heated plate regard-
less of the Prandtl number of the melting substance. For Re > 0,
it was found that convection enhances the melting process. The
present paper further investigates this matter by focusing on the
case for which there is no relative motion between the PCM
block and the heated surface.

First, a new mathematical model that accounts for the effect
of convection is proposed. The objective is to predict accurately
the contact melting behaviour of PCMs with a mathematical
model simple enough to be used in engineering applications.
Next, an experimental rig is erected and experiments are carried
out for the melting of a high Prandtl number substance, i.e., ice.
The effect of convection heat transfer on close contact melting
is then delineated in terms of the Ste number. The role of inertia,
buoyancy and surface tension on the melting process is also
examined.

2. Mathematical model and physical analysis

A schematic representation of the physical system is de-
picted in Fig. 1. A block of solid PCM of initial height H ,
length Lx and depth Lz initially at uniform subcooled temper-
ature Tm − Tsc rests on a flat plate. At time t = 0, the tem-
perature of the flat plate is suddenly raised to a constant value
Tp = Tm +�T . Melting is triggered and the solid descends ver-
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Fig. 1. Schematic of the system.

tically at a speed V while squeezing the melt out of the thin gap
of thickness δ between the solid and the plate.

Six assumptions are made regarding the behaviour of the
physical system:

(1) The melting process is considered quasi-steady, i.e., at
every point in time the weight of the solid is balanced by
the excess pressure built in the liquid film (plus any other
relevant forces);

(2) The heat transfer is one-dimensional (function of y only)
but the dynamic process is two-dimensional (conservation
of momentum in two direction, x and z);

(3) The liquid film thickness δ is constant along the length Lx

and Lz of the block (this assumption results from 2). δ may,
however, vary with time;

(4) The flow in the liquid film remains laminar;
(5) The fluid properties are temperature independent and are

evaluated at the film temperature (Tfilm = Tm + �T/2);
(6) The temperature of the PCM block is considered constant

throughout the melting process.

2.1. Governing equations

Based on these above assumptions, the general mass, mo-
mentum and energy conservation equations for the fluid layer
may be stated as:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1)

u
∂u

∂x
+ v

∂u
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∂u
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� (4)

∂x ∂y ∂z ρfCf
Furthermore, at the solid–liquid interface (y = δ), an energy
balance yields

−kf

(
dT

dy

)
y=δ

= ρsV (hfs + CsTsc) (5)

It is also assumed that at all times the pressure in the liquid
gap is related to the weight of the PCM block and to other forces
by:

Lx/2∫
−Lx/2

Lz/2∫
−Lz/2

P(x, z)dx dz + F = ρs(H − S)LxLzg (6)

To simplify the above system of equations, an order of mag-
nitude analysis is performed. To make sense of this analysis, it
is instructive to look first at a conduction model which was put
forth by Bejan [15].

2.2. Bejan’s model

Bejan’s model presents a simple and elegant solution for the
problem of close contact melting on a heated flat plate. In this
model, heat transfer is considered one dimensional, subcooling
in the solid phase is ignored and the pressure in the liquid layer
is balanced by the weight of the block. The model rests on the
following equations (full details on the mathematical model are
reported in reference [15]):

∂u

∂x
+ ∂v

∂y
= 0 (7)

∂2u

∂y2
= 1

μf

dP

dx
(8)

∂2T

∂y2
= 0 (9)

−kf

(
dT

dy

)
y=δ

= ρsV hfs (10)

Lx/2∫
−Lx/2

P(x)dx = ρs(H − S)Lxg (11)

In this model, inertia in the momentum equation (Eq. (8))
and viscous dissipation and convection in the energy equation
(Eq. (9)) are neglected. However, in a recent study [16] it was
shown that inertia is negligible with respect to friction if

V δ

μf
� 1 (12)

which translates into Bejan’s solution as:

Ste

Pr
� 1 (13)

This condition is satisfied for high Prandtl number sub-
stances and/or small Stefan numbers. For low Prandtl number
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substances however, i.e., liquid metals, the above condition sug-
gests that inertia forces may no longer be neglected in the melt-
ing process. On the other hand, the effect of viscous dissipation
can be ignored in comparison to that of conduction if,

Pr · Ec � 1 (14)

The above condition is always satisfied in the case of a fixed
heated plate. Finally, the effect of convection is negligibly small
with respect to that of conduction if

V δ

αf
� 1 (15)

Again, in Bejan’s model this condition becomes

Ste � 1 (16)

which is independent of the Prandtl number.
Based on these observations, it is expected that convection

heat transfer may play an important role in close contact melt-
ing for Ste � 0.1. As a result, it cannot be overlooked in the
model.

2.3. Proposed model

Bejan’s model for close contact melting was improved in or-
der to account for the effect of convection. The revised model
rests on the following conservation equations:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1)

∂2u

∂y2
= 1

μf

dP

dx
(8)

∂2w

∂y2
= 1

μf

dP

dz
(17)

∂2T

∂y2
= −V

αf

∂T

∂y
(18)

−kf

(
dT

dy

)
y=δ

= ρsV (hfs + CsTsc) (5)

Lx/2∫
−Lx/2

Lz/2∫
−Lz/2

P(x, z)dx dz + F = ρs(H − S)LxLzg (6)

where the velocity component v is approximated as the melting
speed V at the melting interface (y = δ). The boundary condi-
tions for the momentum equations (8) and (17) are u(y = 0) =
0, u(y = δ) = 0,w(y = 0) = 0 and w(y = δ) = 0 respectively.
The boundary conditions for the temperature equation (18) are
T (y = 0) = Tp = Tm +�T and T (y = δ) = Tm. The other force
(F ) in Eq. (6) takes into account the effect of surface tension via
the following expression

F = 2σf(Lx + Lz) (19)

The temperature distribution in the liquid layer is obtained
from the solution of Eq. (18):

T (y) = Tm + �T
{exp(−Vy/αf) − exp(−V δ/αf)} (20)
1 − exp(−V δ/αf)
Fig. 2. Temperature profile in the melt layer.

This temperature profile is plotted in Fig. 2. It is seen that
the effect of convection becomes increasingly important for
(V δ/αf) > 0.1. For these cases, the linear temperature profile
assumed in Bejan’s model is no longer valid. Indeed, as the di-
mensionless parameter V δ/αf increases in magnitude, the mean
temperature of the liquid in the melt gap gets closer to the melt-
ing point Tm and, as a result, the heat flux at the melting front
diminishes and so the melting rate.

Substitution of Eq. (20) into Eq. (5) provides a first relation
between the molten layer thickness δ and the melting speed V :

−ρfCf
�T

1 − exp(V δ/αf)
= ρs(hfs + CsTsc) (21)

The velocity profile for u is found from the solution of
Eq. (8), i.e.,

u(y) = 1

2μf

∂P

∂x
y(y − δ) (22)

This solution cannot be used yet because it involves the un-
known pressure gradient ∂P/∂x. The pressure must be related
to the normal force with which the melting block is pushed
downward. The pressure distribution is determined first by cal-
culating the liquid flow rate

Qx(x) =
δ∫

0

u(x, y)dy (23)

Then, integration of the continuity equation (Eq. (1)) from
y = 0 (v = 0) to y = δ (v = −V ) yields,

dQx(x) + dQz(z) = V (24)

dx dz
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Substituting Eqs. (22) and (23) into (24), the following dif-
ferential relation between the pressure P , the melting speed V ,
and the liquid film height δ is obtained:

∂2P

∂x2
+ ∂2P

∂z2
= −12μfV

δ3
(25)

Using the boundary conditions for the pressure P(x =
±Lx/2) = 0 and P(z = ±Lz/2) = 0, the solution for the Pois-
son equation (25) is:

P(x, z) = 3

2

μfV

δ3

[(
L2

x − 4x2)

+ 32

Lx

∞∑
n=0

(−1)n+1

λ3
n cosh(λnLz/2)

cos(λnx) cosh(λnz)

]
(26)

with λn = (2n + 1)π/Lx .
Substitution of Eq. (26) into Eq. (6) provides a second re-

lation between the molten layer thickness δ and the melting
speed V :

μfV

δ3

[
LzL

3
x − 192L4

x

π5

∞∑
n=0

tanh(λnLz/2)

(2n + 1)5

]

= ρsLxLz(H − S)g − 2σf(Lx + Lz) (27)

Eqs. (21) and (27) are now cast in dimensionless form using
the variables and parameters defined in Table 1:

−Steeff

ρ∗ = 1 − exp(V ∗δ∗Prf) (28)

V ∗ = C2δ
∗3

C1
(29)

with

C1 = 1 − 192

L∗
zπ

5

∞∑
n=0

tanh((2n + 1)πL∗
z/2)

(2n + 1)5
and

C2 = ρ∗(H ∗ − S∗)A − 2

Oh2

(
1 + 1

L∗
z

)

Note that the effect of the density difference between the
solid and liquid phases is taken into account by the dimension-
less ratio ρ∗. C1 is plotted in Fig. 3. Of particular interest is
C1 ≈ 1 when L∗

z � 1(one-dimensional limit) and C1 ≈ L∗2
z

when L∗
z � 1 [9].

Table 1
Dimensionless variables and
parameters

δ∗ δ/Lx

H∗ H/Lx

S∗ S/Lx

L∗
z Lz/Lx

V ∗ V Lx/νf
ρ∗ ρs/ρf

t∗ νft/L
2
x

A L3
xg/ν2

f

The Prandtl number Prf characterizes the substance, the Ste-
fan number Steeff ,the relative heating intensity and the Ohne-
sorge number Oh , the relative magnitude of the surface tension.
Solution of Eq. (28) and (29) yields

δ∗ =
(

C1 ln(1 + Steeff/ρ
∗)

C2Prf

)1/4

(30)

V ∗ =
(

C2

C1Pr3
f

)1/4(
ln

(
1 + Steeff

ρ∗

))3/4

(31)

Finally, knowing that dS∗/dt∗ = V ∗ and S∗(t∗ = 0) = 0, the
time varying height of the block is obtained:

H ∗ − S∗ =
[
(H ∗ − Cσ )3/4 − 3

4
CStet

∗
]4/3

+ Cσ (32)

with

CSte =
(

ρ∗A ln3(1 + Steeff/ρ
∗)

C1Pr3
f

)1/4

and

Cσ = 2

ρ∗AOh2

(
1 + 1

L∗
z

)

The effective Stefan number Steeff introduced in Eq. (28)
takes into account the sub cooling of the PCM. The net effect
of sub cooling is to slow down the melting process as some of
the heat released by the heated plate is stored as sensible heat in
the solid phase of the PCM block. The effective Stefan number
is defined as

Steeff = Cf�T

hfs + CsTsc
(33)

which can be rewritten as

Steeff = Ste

1 + Stesc
(34)

Fig. 3. C1 versus L∗
z .
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Fig. 4. Schematic of the experimental set-up.

3. Experimental setup

An experimental rig was erected in order to check the va-
lidity of the above analytical model. A schematic of the exper-
imental set-up is shown in Fig. 4. A sample of sub cooled ice
(Tsc = 22 K), prepared with tap water, 0.03 m wide, 0.03 m
deep and 0.076 m high, held in a rectangular duct made with
plexiglass walls, rests on a flat aluminium plate heated by elec-
tric resistances. The plate is shaped so as to remove any excess
liquid from underneath the sample. A K-type thermocouple, ac-
curate to ±1 K, is embedded 0.00625 m below the surface of the
plate. It is connected to a temperature controller micromega se-
ries CN77000. The temperature of the heated plate is controlled
using an on/off solid state relay (series SSRL240) from Omega.
The time varying height of the melting ice block is measured
with a ruler, fixed to the transparent wall of the duct, and a stop
watch.

Experiments were conducted for four different plate tem-
peratures ranging from 296 K to 326 K which correspond to
Stefan numbers Steeff of 0.343, 0.497, 0.642 and 0.772 respec-
tively. The resulting dimensionless melting profiles ((H ∗ − S∗)
vs t∗) are depicted in Fig. 5. The error bars represent the area
of multiple data measured under identical conditions. As ex-
pected, the melting speed increases with the plate temperature
and it decreases as the weight (or height) of the PCM block
diminishes. Moreover, these experiments have shown that for
(H ∗ − S∗) < 0.4, buoyancy forces play a role in contact melt-
ing. Towards the end of the melting process, the now lighter
ice block floats on a liquid film maintained by surface tension.
Consequently, it is expected that the predictions made with the
revised model might not fully capture the physics of the melting
process for (H ∗ − S∗) < 0.4.
Fig. 5. Experimental results for H∗ − S∗ versus t∗ .

Fig. 6. H∗ − S∗ versus t∗ for Steeff = 0.497.

4. Results and discussion

Figs. 6 and 7 compare the measured and the predicted melt-
ing profiles for Steeff = 0.50 and Steeff = 0.77 respectively.
In all cases presented here, L∗

z = 1 and C1 = 0.4217. Exam-
ination of these figures reveals that Bejan’s conduction domi-
nated contact melting model overestimates the melting rate for
Steeff > 0.1. The predictions made with the present convection
dominated model are, however, in better agreement with the
experimental data. It is believed that the slight discrepancy re-
sults from the u and w velocity components which are different
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Fig. 7. H∗ − S∗ versus t∗ for Steeff = 0.772.

Fig. 8. NuLx versus H∗ − S∗.

in the model and in the laboratory. Indeed, in the mathemati-
cal model, the flow in the melt layer is assumed to behave as a
Poiseuille flow, whereas in the laboratory, the flow is perturbed
by the imperfections in the experimental setup and on the sur-
face of the heated plate. On the other hand, it is seen that the
effect of surface tension cannot be ignored near the end of the
melting process, i.e. for (H ∗ − S∗) < 0.9.

The variation of the predicted Nusselt number NuLx and of
the melting speed V ∗ at the melting interface in terms of the
height (H ∗ − S∗) are depicted in Figs. 8 and 9 respectively.
The Nusselt number is defined as:

NuLx = q ′′
= −dT/dy|y=δ

(35)

kf�T/Lx �T/Lx
Fig. 9. V ∗ versus H∗ − S∗.

Fig. 10. δ∗ versus H∗ − S∗.

and the melting speed is related to the Nusselt number via the
following expression

V ∗ = Steeff

ρ∗Prf
NuLx (36)

It is seen that as melting proceeds, the decrease in the Nus-
selt number and in the melting speed is accentuated. This be-
haviour is due to the increasing thickness of the melt layer δ∗
(Fig. 10). Towards the end of the melting process, the thick-
ness of the liquid film augments sharply as the pressure exerted
by the melting solid block becomes very small. As a result, the
thermal resistance across this layer increases and the Nusselt
number and the melting speed drop sharply.
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5. Concluding remarks

A study was conducted to examine the role of convection on
close contact melting of a high Prandtl number phase change
material resting on a heated flat plate. A convection dominated
close contact melting model was proposed and its predictions
were compared to a conduction dominated model and to exper-
imental data. The main conclusions that can be drawn from this
study are:

• Convection plays an important role in the process of close
contact melting for Steeff � 0.1. Convection reduces the
heat flux at the solid–liquid interface thereby slowing down
the melting rate. Neglecting convection heat transfer for
cases in which Steeff ∼ 1 yields discrepancies of the order
of 30% between the predicted and the measured melting
rates;

• The effect of inertia forces are negligible at all times for
high Prandlt number substances;

• For (H ∗ − S∗) < 0.9, that is near the end of the melting
process, surface tension cannot be ignored. Surface tension
slows down the process of close contact melting;

• For (H ∗ − S∗) < 0.4, buoyancy starts to play a role in the
balance of forces. From this point on, the remaining ice
floats on the liquid film and the heat transfer is further di-
minished.
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